Sa1qet.en (2201 2481590
19351804 Ysnd |< 3

Suissacoad ydnaiidyuy

$21N10931Y21Y

daempaey judtsuel)

sydn.aiapuy

$94N)29}1Y21Y/ 10559304

§84N)0911Yd1y

Ausred o1ddry

opp!
syo01q Supjing 21seq ay) - 21507

§91M0931YdIy B‘HT
6v9

101pedes ‘siojsisuen)
Annoai Sojeuy

(910 ‘s3p0p ‘sasnq ‘sares)
Amnoap jeydia

1U211N2U0D AjuaIaYU snonunuod

Aiowaw ‘arempiey esayduad ‘Spop aidniniy
180] snouoIyUAS po}p Aq pasiuoiypuAs (212 ‘doyy-dijy “3ou, ‘40, ‘pue,)
eaed Ajoarssew Apuasayuy sajed a1807
212 ‘wopipaid youeiq ‘Yrageid ‘saed 42151821 ‘Sun dnawyLe)
‘sun uonndaxe ajdninw ‘AWIS ‘S19ppe [A]esed 193] 43151831 / 92100
210 ‘sdnuse; (suopannsuy Ajquiasse)
219 419p10-J0-IN0 1d “pen i 19A3] uondNAsul / NdD
WS Bupsmnu (A1OWaW [enyin 59559301d “IVH)
‘speaitpy/sassadoid SO wd)sAs Sunesadg

JUILINDUOD JO Wiog J19Ae uondensqy

$91Mmo9alydiy FHT
sv9

Suissacoad ydnaiidyuy

S21N10931Yy21Y

sious1801 poz

TS
Nndo ayduns vy

$24N)23)121Y 105592014

§9.1N)0911Yd1y

o410 [A

SOV ANVN @duejsul 10} — sajesd

ssapndwod [eySip 1oy syd01q Suipping diseq ay) - 21807

§91M0931YdIy

pue swajsAs SunesadQ =

DUBLINDUOY) JO saSel
1$2IN)D3)YDIE DIBMJOS
S|9AD] JUDIDYHIP UO ADUBLINDUOD)
w 0} 2180] a|dwis wou4 =1
1$2IN)D3}YDIE dIeMpIRH

a9ydeyd siyy uj

$91M0931Yd1y FHT
9

Suissadoad ydnaiiayuy

eV REN 117

sy201q Supjing 21seq ay) - 21807

$31n3291Yd1y

SO ANVN @duesut 1oj — sajed d180] Su

ssapndwod [eySip 1oy syd01q Suipjing diseq ay) - 21507

§9.1N1291YJ.!

iy
Jenueyy

EERTEYETE)

$91n10911Yd1y

- suonesado 10 9ouanbas &
‘pardniisiul /

o,

syp0[q Suipping diseq ayy - 1507

$31n3231Yyo1y

soney ’® SaYNUMS 9[qej[01]U0D)

syo0jq Suipjing d1seq ay) - J1507

$94n32911Y21y

JeuoneN ueljensny ay] - Jow

$a1Njoaiydly

0c0c \»\UEM\CBUEQU ® SYIOMIBN \mﬁtmzm\ﬁm

Architectures - Architectures - Architectures

Interrupt processing
terrupt handler

Architectures

Interrupt processing

Interrupt processing
nterrupt handler

Interrupt processing
Interrupt handler

Interrupt handler
Push registers
Declare local variables Declare local variables
Run handler code Run handler code Run handler code
do some 1/0 i do some 1/0 do some 1/0
+. or run sone tine 3 i - or run some time - or run sone time
critical code critical code
Remove local variables
> Pop registers

Push registers

Push registers
Declare local variables

Push registers
Declare local variables
Run handler code

do some 1/0
- or run sone time
critical code
Renove local variables
> Pop registers

L critical code
i pC > Remove local variables

P Magtsters |

s Honda K rdge (Creathe Commond Al

Architectures : Architectures

Interrupt processing

Interrupt handler

Interrupt processing

Interrupt handler

The CPU
hardware (1)
did that, |
before anything |
was changed

Architectures

Interrupt processing

Interrupt handler

Interrupt handler Interrupt handler
Push registers
f F Declare local variables
! Run handler code
~. do some 1/0 ..
or run some tine
critical code

Push registers
Declare local variables
Run handler code
.. do some 1/0 ..
or run some tine
critical code ..
> Remove local variables

Push registers
Declare local variables
Run handler code

> Pop registers

Architectures . Architectures

Interrupt processing

Interrupt handler

Architectures - Architectures

Interrupt processing

Interrupt handler

Interrupt processing Interrupt processing
Interrupt handler Interrupt handler
Push registers
Declare local variables
Run handler code

.. do some 1/0 .

- or run sone tine

Stack

Architectures

Interrupt processing
terrupt handler

|| Push other registers
pe | Declare local variables

= Architectures

Interrupt processing
nterrupt handler
Program

R terrupt
Push other registers
Declare local variables

> Run handler code

do some 1/0

Architectures

Interrupt processing
Interrupt handler

ar interrupt
priorit
nable interrupt)
Push other registers
Declare local variables
Run handler code

Architectures

Interrupt processing

Interrupt handler

(Adjust prioriti
(Re-enable interrupt)
Push other registers
Declare local variables
Run handler code

do some 1/0 do some 1/0 ..
or run some tine or run some tine
critical code critical code
Remove local variables
» Pop other registers | Pop other registers
©|Return ("bx 1r)

Architectures

Interrupt handler

Architectures

Interrupt handler

Architectures Architectures
Interrupt processing

Interrupt handler

Multiple programs

r t fla Things to consider Things to consider If we can execute interrupt handler code
(Adjust \‘J\,:n‘u 5 o “concurrently” to our “main” prograi
—enable interrupt)

Push other registers N or ¢ - : inte '
Gieth sz Interrupt handler code can be interrupted as v

nterrupt handler code can be interrupted as 5
Run handler code Are you allowing to interrupt an interrupt hand| han - Are you allowing to interrupt an interrupt handler
.. do some 1/0 .. ! S S

+. or run sone tine interrupt on the same priority level (e.g. the same interrupt)? interrupt on the same priority level (e.g. the same interrupt)?

1 Can we then also have multiple “main” programs?
Can you overrun a stack with interrupt handlers?

Can you overrun a stack with interrupt handlers?

Can we have one of those?

Architectures Architectures

Context switch Context switch Context switch Context switch
Dispatcher Dispatcher
Process 1 Process 2

PCB P

Architectures Architectures

Dispacher Dispacher
G | Process 2 Process 1 e Process 2

e »|Declare local variables < Declare local varisbles

o pc | Store SP to PCB 1

Code

Code Code Code

=3 Architectures

Context switch Context switch

Dispaicher Dispaicher

Architectures Architectures Architectures

Context switch

Dispatcher Dispatcher
Process 1

Ero e Process 1 e Process 2 Process 1 Process 2

ey Declare local variables e Declare local variables
Store SP to PCB 1 Store SP to PCB 1

PC - Scheduler Scheduler

R Process 2 Pocess 1

Proce N Push registers
f bCB Declare local variables vCh e} Declare local variables
Store SP to PCB 1 Store SP to PCB 1
Scheduler Scheduler
Code Load SP from PCB 2 a Code | |Load sP from pcs 2 Code Load 5P from PC8 2
P y - Renove local variables
Switch- o Pop registers
variables
| Registers

Code

Process 1

Architectures

Context switch
Dispaicher
Push registers Process 2
Declare local variables

Architectures

Processor Architectures
SIMD ALU units

Provides the facility to apply the sam
struction to multiple data concurrently.
Also referred to as “vector units”.

Examples: Altivec, MMX, SSE[2[3}4],
s specialized compilers

gramming languages with
implicit concurrency.

GPU processing

Graphics processor as a vector unit.
v Unifying architecture languages are

Architectures

Architectures

Vector Machines

. i
Vectorization NEON, SPU, AVX,

Translates into
CPU-level vector operal

1

: Vectors) return Vectors is

ctor (1);
Combined with
ing, loop unrolling and caching

is s fast as a single CPU will get. |

Architectures

Processor Architectures
Pipeline
o P

Some CPU actions are naturally sequential
g instructi to be first loadec
decoded before they can be executed).

More fine gr
instructions into micro code.
v Overlapping those sequences in time
will lead to the concept of pipelines.
v Same latency, yet higher throughput.
) branches

might break the pipelines
& Branch predictors become essential.

Architectures

Processor Architectures
Hyper-threading

Emulates multiple virtual CPU cores

Register sets

Sequencer

Flags

Interrupt logic

while keeping the “expensive” resources
ALU central

Examples: Intel Pentium 4, Core i5/i7,
Atom, Sun UltraSPARC T2 (8 threads per core)

Architectures

Alternative Processor Architectures: Parallax Propeller (2006)

No interrupts!

Architectures

Vector Machines

Vectorization

/a-x
(d "‘)
a-z Function is

“promoted”
100000000, oy
1 [Ind
: real = 5.1,
: [Vector] re:

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

Architectures

Processor Architectures
Parallel pipelines

Filling parallel pipelines
alternating incoming commands between
pipelines) may employ multiple ALUS.
w (Conditional) branches might
again break the pipelin:
«= Interdependencies might limit
the degree of concurren
w= Same latency, yet even higher throughput.

« Compilers need to be aware of the options.

Architectures

Processor Architectures
Multi-core CPUs

Full replication of multiple CPU cores
on the same chip package.

+ Often combined with hyper-thread-
ing and/or multiple other means (as
introduced above) on each core.

* Cleanest and most explicit implementation
o ncurrency on the CPU level.

w= Requires synchronized atomic operations.
Requires programming languages with
implicit or explicit concurrency.

Historically the introduction of multi-core
CPUs ended the “GHz race” in the early 2000s.

8 cores for specializ
bandwidth floating point
ations and 1.
e

= eAbit
| powerPC 02

=3 Architectures

Vector Machines

Reduction

X2) N (¥

(for all i in
R |
Translates into
CPU-level vector operations |
A-chain is evaluated lazy sequentially.

Architectures

Processor Architectures

Out of order execution
Breaking the sequence inside each pipe-
line leads to ' CPU de
w Replace pipelines with hardware sches
ults need to be
-sequentialized” or possibly discarded.
“Conditional branch prediction” executes
the most likely branch or multiple branches.

1= Works better if the presented code
sequence has more independent
instructions and fewer conditional branches.

code optimization to be fully utilized.

o This hardware will require (extensive)
ne ¥

Data managemer

Architectures
Processor Architectures
Virtual memory
Translates logical memory addresses

into physical memory addre:
and provides memory protection features.

* Does not introdu ncurrency by itself.
Is still essential for concurrent programming
as hardware memory protection
guarantees memory integrity for
individual processes / threads.

Virtual memory

Physical memory.

Architectures
Multi-CPU systems
Scaling up:

* Multi-CPU on the same memory

multiple CPUs on same moth
ory bus, e.g. servers, workstations

Multi-CPU with high-speed interconnects
various supercomputer architectures, e.g. Cray XE6:

12-core AMD Opteron, up to 192 per cabinet (2304 cores)
« 3D torus interconnect (160GB/sec cap-

city, 48 ports per node)

“luster computer (Multi-CPU over network)
multiple computers connected by network interface,

on Cluster at ANU
24GB RAM

Architectures

Vector Machines

Reduction
:(X1:Xl) A 7y A 'Z‘l:ZZ)

loo00eace]s perations are
-2 ¢ Lindexd . evaluated in a concurrent
et T T divide-and-conquer
) - (binary tree) structure.
- | Translates into CPU-level vector operations |
e as well as multi-core or
T | tributed operations

Architectures

Vector Machines
General Data-parallelism

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

e

const Mask : [1..3, 1 .. 3] real = ((9, -1, 0), (-1, 5, -1), (0, -1, @));
proc Unsharp_Mask (P, (i, j) : index (Image)) : real
{return + reduce (Mask * P [i -1 .. i+1,3-1..3+11);})

i - i

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture, px);

Architectures

What is an operating system?

1. A virtual machine!

... offering a more comfortable and safer environment

Hardware Hardware Hardware

eral Typ. real-time system

ronment

Architectures

The evolution of communication systems
* 1901: first wireless data transmission (Morse-code from ships to shore)
« 56 first transmission of data through phone-lines
first transmission of data via satellites (Telstar)
* '69: ARPA-net (predecessor of the current internet)
« 80s: introduction of fast local networks (LANs): ethernet, token-ring
+ 90s: mass introduction of wireless networks (LAN and WAN)

Current standard consumer computers might come with:
« High speed network connectors (e.g. GB-Ethernet)
« Wireless LAN (e.g. IEEE802.11g, ...)
+ Local device bus-system (e.g. Firewire 800, Fibre Channel or USB 3.0)
« Wireless local device network (e.g. Bluetooth)
« Infrared communication (e.g. IrDA)
+ Modem/ADSL

Architectures

Types of current operating systems

Real-time operating systems

Fast context switches?
Small size?

Quick response to external interrupts?
Multitasking?

‘low level’ programming interfaces?
Interprocess communication tools?
High processor utilization?

=32

Architectures

Vector Machines

P
=~/

Cellular automaton transitions from a state into the next state
. /e r—

- eV € : - "= (,)ieallcellsof astate
transition concurrently into new cells by following a rule

General Data-parallelism

Next_State = forall World_Indices in World do Rule (State, World_Indices);

John Conway's Game of Life rule:
proc Rule (S, (i, i) index (World)) : Cell {
const Population : index ({@ .. 9}) =
+ reduce Count (Cell.Alive, S [i - 1
return (if Population El
|| (Population 4 88 S [i, j] == Cell.Alive) then Cell.Alive
else Cell.Dead);

Architectures

Architectures

Architectures

Operating Systems

What is an operating system?

Architectures

What is an operating system?

2. A resource manager!

... coordinating access to hardware resources

il
=3 Architectures

Types of current operating systems
Personal computing systems, workstations, and workgroup servers:

late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

80s: PCs starting with almost none of the classical OS-features and services,
but with an user-interface (MacOS) and simple device drivers (M$-DOS)

= last 20 years: evolving and expanding into current general purpose OSs, like for instace:
« Solaris (based on SVR4, BSD, and SunOS)
 LINUX (open source UNIX re-implementation for x86 processors and others)
« current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
+ MacOS X (Mach kernel with BSD Unix and a proprietary user-interface)

Multiprocessing is supported by all these OSs to some extent.
None of these OSs are suitable for embedded systems, although trials have been performed

None of these OSs are suitable for distributed or real-time systems.

=3 Architectures

Types of current operating systems

Real-time operating systems

What is an operating system?

2. A resource manager!

.. coordinating access to hardware resources
Operating systems deal with

processors
memory

mass storage
communication channels

devices (timers, special purpose processors, peripheral hardware,

Architectures

Types of current operating systems

Parallel operating systems
« support for a large number of processors, either:

+ symmetrical: each CPU has a full copy of the operating system
or

+ asymmetrical: only one CPU carries the full operating system, the others are
k

operated by small operating system stubs to transfer code or tasks.

=3 Architectures

Types of current operating systems

Real-time operating systems need to provide...
& the logical correctness of the results as well as
e the correctness of the time, when the results are delivered

w Predictability! (not performance!)

e All results are to be delivered just-in-time - not too early, not too late.

Timing constraints are specified in many different ways
. often as a response to ‘external’ events
v reactive systems

What is an operating system?

1. A virtual machine!

... offering a more comfortable and safer environment

(e.g. memory protection, hardware abstraction, multitasking,

Architectures

The evolution of operating systems

« in the beginning; single user, single program, single task, serial processing - no OS
« 50s: System monitors / batch processing
& the monitor ordered the sequence of jobs and triggered their sequential execution
« 505-60s: Advanced system monitors / batch processing
= the monitor is handling interrupts and timers
& first support for memory protection
w first implementations of privileged instructions (accessible by the monitor only).
« early 60s: Multiprogramming systems:
w employ the long device /0 delays for switches to other, runable programs
« early 60s: Multiprogramming, time-sharing systems:
w assign time-slices to each program and switch regularly
« early 70s: Multitasking systems — multiple developments resulting in UNIX (besides others)
« early 80s: single user, single tasking systems, with emphasis on user interface or APIs.
MS-DOS, CP/M, MacO$ and others first employed ‘small scale’ CPUs (personal computers)
« mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)

Architectures

Types of current operating systems

Distributed operating systems

« all CPUs carry a small kernel operating system for communication services.
all other OS-services are distributed over available CPUs
services may migrate
services can be multiplied in order to
« guarantee availability (hot stand-by)
« ortoincrease throughput (heavy duty servers)

Architectures

Types of current operating systems

Embedded operating systems

usually real-time systems, often hard real-time systems
very small footprint (often a few KBs)
none or limited user-interaction

90-95% of all processors are working here!

Architectures

What is an operating system?

Is there a standard set of features for operating systems?

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

wr almost:

memory process inter-process

will be considered essential in most systems

Is there always an explicit operating system?

Architectures

Typical structures of operating systems

Monolithic
(or ‘the big mess...)

non-portable

hard to maintain

lacks reliability

all services are in the kernel (on the same privilege level)

= but: may reach high efficiency

Monolithic

e.g. most early UNIX systems,
MS-DOS (80s), Windows (all non-NT based versions)
MacOS (until version 9), and many others...

1
a

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

= no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

=
e

Architectures

What is an operating system?
Is there a standard set of features for operating systems?
w no:
the term ‘operating system’ covers 4kB microkernels,
as well as > 1GB installations of desktop general purpose operating systems.
Is there a minimal set of features?

almost:

memory process d inter-process

will be considered essential in most systems

Is there always an explicit operating system?

no:

some languages and development systems operate with standalone runtime environments

Architectures

Architectures

Typical structures of operating systems

pKernels & client-server models
pkernel implements essential process,
memory, and message handling
all‘higher’ services are user level servers

significantly easier to maintain

kernel ensures reliable message passing ardware

between clients and servers
highly modular and flexible
servers can be redundant and easily replaced

possibly reduced efficiency through
increased communications

e.g. current research projects, L4, etc.

Typical structures of operating systems

Monolithic & Modular

+ Modules can be platform independent

+ Easier to maintain and to develop

« Reliability is increased

« allservices are still in the kernel (on the same privilege level)

= may reach high efficiency
Modular

e.g. current Linux versions

Architectures

Typical structures of operating systems

pKernels & client-server models
pkernel implements essential process,
memory, and message handling
all‘higher’ services are user level servers
significantly easier to maintain

kernel ensures reliable message passing
between clients and servers:
locally and through a network

highly modular and flexible
servers can be redundant and easily replaced

possibly reduced efficiency through increased communications

e.g. Java engines,
distributed real-time operating systems, current distributed OSs research projects

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

& no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

|
|

Architectures

Typical features of operating systems
Process management:

* Context switch
« Scheduling
+ Book keeping (creation, states, cleanup)

& context switch:

w needs to...

« ‘remove’ one process from the CPU while preserving its state
« choose another process (scheduling)

« ‘insert’ the new process into the CPU, restoring the CPU state

Some CPUs have hardware support for context switching, otherwise:
w use interrupt mechanism

Architectures

Typical structures of operating systems

Monolithic & layered

easily portable

significantly easier to maintain

crashing layers do not necessarily stop the whole OS
possibly reduced efficiency through many interfaces
rigorous implementation of the stacked virtual machine

perspective on OSs

Layered

e.g.some current UNIX implementations (e.g. Solaris) to a certain de-
gree, many research OSs (e.g. ‘THE system, Dijkstra ‘68)

Architectures

UNIX

UNIX features

Hierarchical file-system (maintained via‘mount’ and ‘unmount’)
Universal file-interface applied to files, devices (1/0), as well as IPC
Dynamic process creation via duplication
Choice of shells
Internal structure as well as all APIs are based on ‘C’
Relatively high degree of portability
s UNICS, UNIX, BSD, XENIX, System V, QNX, IRIX, SunOS, Ultrix, Sinix, Mach,

Plan 9, NeXTSTEP, AIX, HP-UX, Solaris, NetBSD, FreeBSD, Linux, OPEN-
STEP, OpenBSD, Darwin, QNX/Neutrino, OS X, QNX RTOS,

Architectures

What is an operating system?
Is there a standard set of features for operating systems?

 no:
the term ‘operating system’ covers 4kB microkernels,

as well as > 1GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

- almost:

memory process d i

will be considered essential in most systems

Architectures

Typical features of operating systems

Memory management:
Allocation / Deallocation
Virtual memory: logical vs. physical addresses, segments, paging, swapping, etc
Memory protection (privilege levels, separate virtual memory segments, ...)
Shared memory

Synchronisation / Inter-process communication
« semaphores, mutexes, cond. variables, channels, mailboxes, MPI, etc. (chapter 4)
& tightly coupled to scheduling / task switching!

Hardware abstraction
* Device drivers
o API
« Protocols, file systems, networking, everything else.

Architectures

Typical structures of operating systems

pKernels & virtual machines

pkernel implements essential process,
memory, and message handling

all ‘higher’ services are dealt with outside the

kernel = no threat for the kernel stability APls L AP |
significantly easier to maintain —
multiple OSs can be executed [

at the same time

kerne i highly hardware dependent

only the pkernel needs to be ported.

possibly reduced efficiency through

increased communications

e.g. wide spread concept: as early as the CP/M, VM/370 (79)
or as recent as MacOS X (mach kernel + BSD unix),

Architectures

UNIX

Dynamic process creation
pid = fork ();
resulting a duplication of the current process

returning 0 to the newly created process

returning the process id of the child process to the creating process (the ‘parent’ process)
or -1 for a failure

=3 Architectures Architectures

UNIX UNIX UNIX UNIX

Architectures Architectures

Synchronization in UNIX = Signals Message passing in UNI Pipes Processes & IPC in UNIX
int data_pip Processes:
A N { // parent
#include (data_pipe [01);
#include <sys/types.h>) h tehar (0) > 0) {
g 0 to the newly created process #include <signal.h>

Dynamic process ¢
pid = fork ();
« Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

sulting a duplication of the current process
g2 dup P & inefficient, but can generate new tasks out of any user process - no shared memory!

catch_stop); O=0/ Signals:
(data_pipe [11); « limited information content, no buffering, no timing assurances (signals are not interrupts!)
void catch_stop (int hile ((

« returning the process id of the child process to the creating process (the ‘parent’ pr pid_t id;
or -1 for a failure
Frequent usage: e ((re (data.pipe 11 e very b not very powerful form of synchronisation
if (0 =10 { (data_pipe .)
/ the child’s task . 2 putchar (c exit (; Pipes:

« unstructured byte-stream communication, access is identical to file operations

if (re = -1) (" & not sufficient to design client-server architectures or network communications
perror (“pipe broken“); (data_pipe [11);

s task ..) lose (data_pipe [01); ex

/+ wait for the ter (data_pine [0D); oxit (0

Architectures

UNIX POSIX

Architectures Architectures

Architectures

POSIX - some of the relevant standard. POSIX - 1003.1b/c

Sockets in BSD UNIX

m of a universal file interface for everything and in

g. UDP/IP):

Connec

 Server -

* Client sids

Architectures
Summary

Architectures

* Hardware architectures - from simple logic to supercomputers
+ logic, CPU architecture, pipelines, out-of-order execution, multithreading,

* Data-Parallelism
« Vectorization, Reduction, General data-parallelism

* Concurrency in languages
« Some examples: Haskell, Occam, Chapel

* Operating systems

* Structures: monolithic, modular, layered, pkern
« UNIX, POSIX

Portable Operating System Interface for Unix

IEEE/ANSI Std 1003.1 and following.

Library Interface (API)

[C Language calling conventions — types exit mostly in terms of
(open) lists of pointers and integers with overloaded meanings].

More than 30 different POSIX standards (and growing / changing).

5 a system is‘POSIX compliant, if it implements parts of one of them!

& a system is 100% POSIX compliant) if it implements one of them!

0031,
1053

10031
0

10021
-

m tealime signals, priortyschedulng,timers, asynchronous O, prioritized 0, 5
Rl 110, ile sync, mapped files, memory locking, memory protection, mes-
EXIENsions age passing, semaphor

it | new process create semantics (spawn), sporadic server scheduling, execution time
O 2R e (orink ofpecestes il et adsil O aisony itk sy Umeensid o Hlocks
SRS s, G e i) ot i

D T —
time Extensions 10cks i locks, and persistent otification for message queues

buifer management, send control blocks, asynchronous and synchronous of
ations, bounded blocking, message priorities, message labels, and implementation
protocols

istributed
Real-time

Frequently employed POSIX features inc

* Threads: a common interface to threading - differences to ‘classical UNIX processes

® Timers: delivery is accomplished using POSIX signals

o Priority scheduling: fixed priority, 32 priority levels
 Real-time signals: signals with multiple levels of priority
¢ Semaphore: named semaphore

* Memory queues:

 Shared memor:

